Ce sujet a été résolu
Ahh oui je sais que sur le mac j'avais fait un truc comme ça, venv ou virtuelenv je sais plus
Yep exactement ça, un venv
Je m'en étais servi quand j'apprenais Django pendant le chomage mais j'ai jamais continué
le GOAT
Je m'en étais servi quand j'apprenais Django pendant le chomage mais j'ai jamais continué
il y a 2 ans
YES CA MARCHE PUTAIN CIMER CIMER CIMER TES LE VRAI PUTAIN DE KING DU TOPIC
MERCI AUSSI A VOUS DEUX LINK ET YOUNI VOUS ETES DE VRAIS BROS
MERCI AUSSI A VOUS DEUX LINK ET YOUNI VOUS ETES DE VRAIS BROS
hihihihihihi
il y a 2 ans
tu lis de travers le J
Oui un peu c'était juste en alt tab rapidement entre deux construction (j'étais sur un RTS) . . .
Gardez mémoire de moi, non point tel que j’ai failli, mais tel que j’étais.
il y a 2 ans
YES CA MARCHE PUTAIN CIMER CIMER CIMER TES LE VRAI PUTAIN DE KING DU TOPIC
MERCI AUSSI A VOUS DEUX LINK ET YOUNI VOUS ETES DE VRAIS BROS
MERCI AUSSI A VOUS DEUX LINK ET YOUNI VOUS ETES DE VRAIS BROS
Allez au boulot maintenant
Gardez mémoire de moi, non point tel que j’ai failli, mais tel que j’étais.
il y a 2 ans
Yep exactement ça, un venv
Je m'en étais servi quand j'apprenais Django pendant le chomage mais j'ai jamais continué
Je m'en étais servi quand j'apprenais Django pendant le chomage mais j'ai jamais continué
Peu ou prou la même chose
Gardez mémoire de moi, non point tel que j’ai failli, mais tel que j’étais.
il y a 2 ans
YES CA MARCHE PUTAIN CIMER CIMER CIMER TES LE VRAI PUTAIN DE KING DU TOPIC
MERCI AUSSI A VOUS DEUX LINK ET YOUNI VOUS ETES DE VRAIS BROS
MERCI AUSSI A VOUS DEUX LINK ET YOUNI VOUS ETES DE VRAIS BROS
il y a 2 ans
@SHAPE2OUF Le boss, l'élite
le shape, le ouf
Gardez mémoire de moi, non point tel que j’ai failli, mais tel que j’étais.
il y a 2 ans
Allez au boulot maintenant
Plus qu'à retrouver et télécharger le dossier image de 2GB qui utilise justement la bibliothèque que je viens d'installer

il y a 2 ans
expert (escroc) en tout :lebossgraisse2Velorev:
Mais tu fais (ou t'as fais) du python ou pas du coup?
Gardez mémoire de moi, non point tel que j’ai failli, mais tel que j’étais.
il y a 2 ans
Mais tu fais (ou t'as fais) du python ou pas du coup?
c'est secret !!! (non)
il y a 2 ans
le shape, le ouf
t'as oublié le 2
Quand j'ai dit que je voulais devenir humoriste, tout le monde a rit. Maintenant que je le suis, plus personne ne rit.🃏
il y a 2 ans
Plus qu'à retrouver et télécharger le dossier image de 2GB qui utilise justement la bibliothèque que je viens d'installer

Bonne chance
Moi pour le boulot et le télétravail, j'ai 300 Go à garder synchronisés en permanence
le GOAT
Moi pour le boulot et le télétravail, j'ai 300 Go à garder synchronisés en permanence
il y a 2 ans
c'est secret !!! (non)
ça me regarde pas !! (ah je me suis demandé
)

Gardez mémoire de moi, non point tel que j’ai failli, mais tel que j’étais.
il y a 2 ans
Tout ce que je peux te dire c'est que mon prof voulait qu'on prouve ça pendant un DS et ça nous a traumatisé
Soit E un espace vectoriel normé (c'est faux sinon, par exemple avec une distance discrète). Soit d la distance induite par la norme. Soient x € E et r > 0.
Par définition r est le rayon de B(x,r). Montrons que diam(B(x,r)) = 2r.
Soient a et b dans B(x,r), on a d(a,b) <= d(a,x) + d(b,x) (par inégalité triangulaire) <= r + r = 2r, donc sup d(a,b) <= 2r, donc diam(B(x,r)) <= 2r.
Pour avoir l'égalité suffit de se donner une paire de suites (an), (bn) dans la boule qui tendent vers des "points opposés" (on peut prendre un vecteur dans une base de E pour se diriger) de l'adhérence de la boule et de vérifier que la limite de la suite (d((an),(bn)) converge vers 2r, quelque chose comme ça
Par définition r est le rayon de B(x,r). Montrons que diam(B(x,r)) = 2r.
Soient a et b dans B(x,r), on a d(a,b) <= d(a,x) + d(b,x) (par inégalité triangulaire) <= r + r = 2r, donc sup d(a,b) <= 2r, donc diam(B(x,r)) <= 2r.
Pour avoir l'égalité suffit de se donner une paire de suites (an), (bn) dans la boule qui tendent vers des "points opposés" (on peut prendre un vecteur dans une base de E pour se diriger) de l'adhérence de la boule et de vérifier que la limite de la suite (d((an),(bn)) converge vers 2r, quelque chose comme ça
il y a 2 ans
Plus qu'à retrouver et télécharger le dossier image de 2GB qui utilise justement la bibliothèque que je viens d'installer

Bonne chance, dis toi que t'as fais le plus dur . . . Après est-ce vrai bon hein
Gardez mémoire de moi, non point tel que j’ai failli, mais tel que j’étais.
il y a 2 ans
t'as oublié le 2
Tout se perds . . .
Gardez mémoire de moi, non point tel que j’ai failli, mais tel que j’étais.
il y a 2 ans
Soit E un espace vectoriel normé (c'est faux sinon, par exemple avec une distance discrète). Soit d la distance induite par la norme. Soient x € E et r > 0.
Par définition r est le rayon de B(x,r). Montrons que diam(B(x,r)) = 2r.
Soient a et b dans B(x,r), on a d(a,b) <= d(a,x) + d(b,x) (par inégalité triangulaire) <= r + r = 2r, donc sup d(a,b) <= 2r, donc diam(B(x,r)) <= 2r.
Pour avoir l'égalité suffit de se donner une paire de suites (an), (bn) dans la boule qui tendent vers des "points opposés" (on peut prendre un vecteur dans une base de E pour se diriger) de l'adhérence de la boule et de vérifier que la limite de la suite (d((an),(bn)) converge vers 2r, quelque chose comme ça
Par définition r est le rayon de B(x,r). Montrons que diam(B(x,r)) = 2r.
Soient a et b dans B(x,r), on a d(a,b) <= d(a,x) + d(b,x) (par inégalité triangulaire) <= r + r = 2r, donc sup d(a,b) <= 2r, donc diam(B(x,r)) <= 2r.
Pour avoir l'égalité suffit de se donner une paire de suites (an), (bn) dans la boule qui tendent vers des "points opposés" (on peut prendre un vecteur dans une base de E pour se diriger) de l'adhérence de la boule et de vérifier que la limite de la suite (d((an),(bn)) converge vers 2r, quelque chose comme ça
on est d'accord que t'as eu une enfance difficile
il y a 2 ans
Bonne chance, dis toi que t'as fais le plus dur . . . Après est-ce vrai bon hein
Oui après c'est tranquille, ce sera principalement du ctrl+c/ctrl+v avec des messages d'erreur que je pourrai un peu plus comprendre

il y a 2 ans